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THE BASIC PHYSICS OF THE ELECTRON COLLECTION PROCESS 

An experimental study of plasma contacting with an emphasis on 

the electron collection mode of this process was conducted during the 

grant period. 

profiles and potential differences that develop between a hollow 

cathode plasma contactor and a simulated ambient plasma were obtained. 

The basic physical features of the electron collection process were 

defined on the basis of these experimental results and the diffi- 

culties associated with extrapolating results obtained in the 

laboratory to predict contactor performance in space were reviewed. 

Although laboratory results can not be expected to predict contactor 

performance in space perfectly, the laboratory results constitute an 

important body of data that can serve to validate detailed numerical 

models of the contacting process. 

predict contactor performance in space and to facilitate interpre- 

tation of data collected in space was pointed out. The details of 

this work are presented in the paper entitled "Plasma Contacting--An 

Enabling Technology" which is included as Appendix A to this report. 

Results describing variations in plasma property 

The need for these models to 



NON-IDEAL FEAT(1BES OF THE ELECXRON COLLECTION 'PROCESS 
AND 

-Y STUDIES OF THE ELECTBON EXXSSION PROCESS 

Experimental results were obtained during the grant period which 

describe operation of and the plasma environment associated with a 

hollow cathode-based plasma contactor collecting electrons from an 

ambient, low density Maxwellian plasma when the boundary between the 

contactor and the ambient plasma is nearly hemispherical. 

physical features of the process of electron collection identified on 

the basis of these results were shown to include 1) a double-sheath 

across which a substantial potential difference can develop and 

2) substantial ionization of neutral gas coming from the cathode by 

the electrons being collected. 

diameter of the anode was too small to yield a hemispherical double- 

sheath were shown to induce distortion of this sheath. It was argued, 

however, that the same basic phenomena associated with the hemispheri'- 

cal sheath were still active in this case. Data obtained in these 

Basic 

Experimental results obtained when the 

experiments should also serve to validate numerical models of this 

process that are being developed to predict plasma contactor 

performance in space. 

results measured on a contactor emitting electrons were examined and 

some physical elements of this process were identified. A detailed 

description of this-work entitled "Ground-Based Tests of Hollow 

Cathode-Based Plasma Contactors" was written. It is included as 

Appendix B to this report. 

Preliminary performance and plasma property 
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INTRODUCTION 

i 

A plasma contactor is a device that can be used to remove and 

control electrical charge buildup on satellites by generating a 

relatively dense plasma that can couple spacecraft surfaces to each 

other and to the ionospheric plasma. 

plasma contactor serves essentially the same function as a terestrial 

grounding wire. In electrodynamic tether applications, on the other 

hand, plasma contactors serve as electrical "brushes". An electro- 

dynamic tether system consists of two satellites connected by a long, 

conducting wire. 

an equatorial orbit around the Earth the tether will cut across the 

geomagnetic field lines and a potential difference will be induced 

between the two satellites. 

contactors (one at each satellite) are connected in series with the 

tether (and if the plasma contactors are efficient "brushes" which 

establish an electrical connection between each end of the tether and 

the stationary ionospheric plasma), current will flow through the 

tether and electrical power can be converted directly from the orbital 

energy of the tethered satellite system. 

system, plasma contactor performance can have an important influence 

on the efficiency of power generation and the safety of the mission 

because of the high currents (ampere levels) and high voltages (about 

3000 V for a 20 km tether in LEO) involved. 

In this particular application a 

When such a system is gravity gradient stabilized in 

If an electrical load and two plasma 

In an electrodynamic tether 
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This report will discuss ground-based tests of plasma contactors. 

It will concentrate on describing the plasma contacting performance of 

a hollow cathode plasma source. 

the simulated ionospheric plasma properties will be discussed, along 

with simple models of the important processes observed. In order to 

avoid reproduction of the information described in Appendices A and B 

of this report extensive reference will be made to the material 

presented there. 

Specific experiments which address 

The vacuum chamber used to test the hollow cathode-based plasma 

contactor is cylindrical with a diameter of 1.2 m and a length of 

5.3 m. 

on the centerline, while a second hollow cathode source (the 

simulator), which was used to produce the simulated ionospheric 

plasma, was positioned 2.7 m away. 

chamber was typically in the range of 3 to 8 x ~ O - ~  Torr during tests 

when both the contactor and simulator devices were operated. The 

hollow cathode devices, mechanical and electrical schematics, and 

plasma diagnostic instruments are described in Appendices A and B. 

The contactor was typically placed at one end of the chamber 

The pressure within the vacuum 

The procedure used to test the plasma contactor consisted of 

first starting the contactor and simulator discharges and setting them 

to prescribed values. Next, the contactor and its associated plasma 

were biased with respect to the ambient plasma and the current flow 

induced at this bias condition was measured. 

voltage and measuring the corresponding current, a plot which 

By changing the bias 
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describes the performance of the contactor can be constructed. 

each bias voltage/current condition plasma properties were measured 

throughout the region between the contactor and simulator. 

of results obtained during tests are described in Appendix A, while 

more detailed discussions and results are presented in Appendix B. 

In order to study the effects of the simulator on the ambient 

At 

A summary 

plasma conditions, its 3 cm diameter, flat plate anode was modified so 

it could be positioned at distances that ranged from 0 to 10 mm from 

the simulator cathode. 

determined that some control over the ambient plasma density in the 

vacuum chamber could be achieved. 

which ions could be collected was positioned within the contactor 

plasma plume. 

contactor plume region could be studied. 

By moving the simulator anode it was 

In another experiment a surface on 

This was done so the effects of removing ions from the 

G- OBSERVATIONS 

Many physical phenomena which are observed in ground-based 

experiments of plasma contactors can be described using a plot of 

plasma potential versus axial position. A general example of such a 

plot is shown in Fig. 1. In this figure, the contactor at the left- 

hand side is collecting electrons (the collector) and the simulator at 

the right hand side is emitting them (the emitter). 

double sheath that develops near the collector can sustain potential 

drops between 10 and 100 V; depending to first order on such variables 

and parameters as the electron current being collected, the contactor 

flowrate and the contactor anode size. 

The collector 

The small potential dip 

5 
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separating the ambient plasma and the collector double sheath has been 

observed in most experiments. 

modelled by other researchers! 

occurs (and the electron and ion currents counterflowing through the 

double-sheath are also enhanced) because the ambient plasma Maxwellian 

electron population have a non-zero temperature (Teo - 5 to 7 eV) and 
they therefore approach the sheath with non-zero velocities. 

noted that the ambient plasma electron population typically consists 

of a Maxwellian electron group (comprising about 9 5 %  of the total 

electron density) and a second mono-energetic or primary electron 

group (which normally exhibits an energy of - 30 to 80 eV) which 
contributes the remaining density. 

electrons flowing through the double-sheath are electrons that are 

drawn from the ambient plasma Maxwellian group. 

ambient plasma density is sustained principally by volume ionization 

of neutral atoms that are present in the vacuum tank. 

is induced by both Maxwellian and mono-energetic electrons at rates 

that are of the same order under most experimental conditions. 

Such dips have been observed and 

Their results suggest that this dip 

It is 

Consequently, most of the 

Analysis suggests the 

This ionization 

The paper in Appendix B shows that the product of the surface 

area of the downstream boundary of the collector double sheath and the 

random current density of the ambient plasma is equal to the electron 

current being drawn from the ambient plasma through the collector 

double sheath into the collector plume. 

that the ion current emitted from the collector plasma plume is 

proportional to the electron current and the square root of the 

electron/xenon ion mass ratio. This experimental result, along with 

calculations indicating that very few elastic and inelastic collisions 

In addition, this paper shows 

7 



occur within the collector double-sheath, confirm earlier assumptions 

that this sheath is doubly space-charge limited and collisionless. 

Mono-energetic electrons have been obsenred streaming from the 

collector double-sheath toward the contactor in the collector plume 

shown in Fig. 1. These electrons presumably comprise a beam, however, 

no measurements of turbulence have been made in this region to 

determine if streaming instabilities develop there. 

and B simple models have been used to calculate the ion production 

rate (due to classical ionizing collisions) in the collector plume 

region. 

there to supply the ions that counterflows against the electrons and 

assure ion flow is at its space-charge-limited value. Presently, the 

mechanism by which the collector double sheath is held in a fixed, 

stable position is uncertain although it does appear that one boundary 

of the sheath remains tied to the collector anode. It is believed 

that a collector double sheath will also develop during space tests, 

but whether or not it will be stable and well-defined is uncertain. 

Questions concerning the development of double sheaths are considered 

to be of primary importance, because ground-based tests have shown 

that the dominant voltage drop associated with collector operation 

occurs at double sheaths and their existance would therefore be 

expected to exert a significant influence on the electrodynamic tether 

system efficiency. 

In Appendices A 

These calculations show that sufficient ion production occurs 

The intermediate double sheath shown in Fig. 1, which forms 

downstream of the ambient plasma region, is typically located -100 to 

200 cm from the contactor emitting electrons (the emitter) and a 

potential drop of -10 V generally develops across it. Presently it is 

8 
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believed that the intermediate double sheath is caused by interactions 

between the vacuum chamber wall and the plasma being produced near the 

emitter. 

low-density plasma region which surrounds the emitter from the ambient 

plasma. This non-Maxwellian, beam-dominated plasma region is shown in 

Appendix B to contain a electrons that are expanding in a spherical 

fashion from the point at which the emitter is located. 

hump immediately adjacent to the emitter double sheath appears to 

develop because electrons being drawn from the emitter induce 

ionization of the neutral atoms in this region at a high rate. 

potential drop across the emitter double sheath has been observed to 

range from 20 to 80 V depending upon the emitter operating conditions. 

Effects of Simulator Operating Conditions 

It is appears that this sheath separates a beam-dominated, 

The potential 

The 

A simplified plasma potential profile that doesn't contain the 

detailed structure of Fig. 1 is shown in Fig. 2. When experiments are 

being conducted and the contactor at the origin of the potential plot 

is collecting electrons as it is in this case, it is this collector 

that is being investigated. The other plasma source, which is not 

located at the origin where instruments are available to probe it, 

serves to generate the ambient plasma from which electrons can be 

collected for the experiment. 

"simulator". 

cathode device showing its flat plate anode which can be moved during 

operation to change the cathode/anode separation distance Xa. 

defined on the plasma potential profile shown in Fig. 2 are the 

potential difference between the ambient plasma and the simulator 

cathode, labeled AVs and the potential difference between the 

This source is designated the 

Also shown in Fig. 2 is a sketch of the simulator hollow 

Terms 
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contactor anode and the ambient plasma, labeled VSH. 

potential drops associated with the emitter, the emitter double sheath 

and the intermediate double sheath are all lumped together and 

designated by the voltage drop AVs. 

Note that the 

In order to study the effects of simulator operating and design 

parameters on the ambient plasma properties, the following experiment 

was performed. First, the simulator and collector flowrates were set 

at 2 and 3 . 4  standard cubic centimeters per minute of xenon (sccm 

(Xe)). 

3.5~10-~ Torr. 

were biased positive with respect to the ambient plasma and the 

electron collection current (JcE) and ambient plasma properties were 

measured. 

bias conditions. 

contactor electron collection current measured in this test is shown 

in Fig. 3 .  This figure shows that the ambient plasma density varies 

linearly with electron collection current when the tests are carried 

out in a ground-based vacuum tank as they were in this case. 

ambient plasma potential measured during the experiment corresponding 

to Fig. 3 remained at about 40 to 50 V (from Fig. 2 this means that 

AVs also remained at about 40 to 50 V). 

that the ionization rate occurring within the ambient plasma, which 

controls the plasma density in this region, is proportional to the 

simulator electron emission current, It is noted that the electron 

current emitted by the simulator agreed with the current collected by 

the contactor to within 1% in this case and for all other data 

presented in this report unless specifically stated otherwise. 

This induced a vacuum chamber background pressure of 

Next, the collector and the collector plasma plume 

This procedure was repeated for several different collector 

A typical plot of ambient plasma density versus 

The 

Consequently, Fig. 3 suggests 

11 
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Finally, it is noted that the variation of ambient plasma density with 

electron collection current observed in these ground-based tests would 

not be expected in a space test. 

ambient plasma should be essentially unaffected by changes in 

collection current. 

There, the large reservoir of 

Calculations of the ion production rate induced by electrons 

emitted from the simulator suggest that the ambient plasma density 

should also depend on the energy at which these electrons enter the 

ambient plasma. 

was varied by changing the simulator anode/cathode separation distance 

Xa while the contactor electron collection current was held constant. 

As shown by the data contained in Fig. 4 ,  the ambient plasma density 

is indeed dependent upon AVs, and in fact it can be changed by a 

factor of four by reducing Xa from 3.5 to 1 mm. The size of the 

collector double-sheath region was also observed to shrink at a given 

electron current condition when the ambient plasma density was 

increased. 

in AVs, but they these lower values of the simulator anode separation 

distance were not investigated because large noise-to-signal ratios 

were observed on Langmuir probe traces collected under these 

conditions; this noise made analysis of the Langmuir probe traces 

impossible. 

the collector plume boundary. 

typically between one and ten Hertz, but lower amplitude, higher 

frequency oscillations could have also been present. 

of the frequency spectra associated with this noise were made. 

In order to test this hypothesis, the parameter AVs 

Reductions in Xa below -1 mm induced continued increases 

The noise was observed to correlate with oscillations of 

The frequency of oscillation was 

No measuremments 
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In another test, the simulator discharge current was changed in 

order to vary AVs and the results of this test are shown in Fig. 5. 

Again increasing AV 

under the prescribed constraint of operation at a constant electron 

collection current. 

the ambient plasma was nearly constant at -6 to 7 eV over the complete 

range of plasma densities associated with the data in Figs. 3 ,  4 and 

5; and this temperature along with the ambient Maxwellian electron 

density generally indicated ion production rates comparable to ion 

production rates caused by mono-energetic electrons being supplied by 

the simulator. 

caused the ambient plasma density to increase S 

It is noted that the electron temperature within 

A possible explaination for the increase in AVs that accompanies 

reductions in simulator discharge current and/or anode/cathode 

separation distance is considered to be related to changes in plasma 

density in the region immediately adjacent to the simulator. 

discharge currents and small anode/cathode spacings (which would 

enhance ion recombination) could cause the plasma in this region to 

have a low density. 

expected to necessitate larger potential differences between the 

simulator and the ambient plasma to extract a given electron emission 

current. 

Cylindrical and Spherical Space-Charge Limited Double-Sheath Analysis 

A first-order approximation of the potential drop across a 

collector double sheath and an understanding of the basic processes 

occurring in this region can be obtained by solving the cylindrical 

and spherical space-charge-limited double-sheath problems. 

solution to the spherical double sheath is given in Ref. 1. 

Both low 

These lower plasma densities would in turn be 

The 

The 
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equations and boundary conditions used to obtain that solution will be 

summarized here along with similar equations and boundary conditions 

needed to solve the cylindrical double-sheath problem. 

shown in Fig. 6 suggests a possible shape for a double-sheath region 

which might be modeled using a combination of spherical and 

cylindrical segments. 

measured shapes shown in Fig. 6 of Appendix A and Figs. 6 and 13 of 

Appendix B. 

sheath region shown in Fig. 6 can be modeled using the equations 

listed as items 1, 2 and 3 in Table 1. Solving these equations 

The schematic 

This shape is similar to the experimentally 

The spherical and cylindrical segments of the double- 
2 

numerically for values of jo (the normalized current from the outer 

and surface ) and Q versus double-sheath radius ratio (ri 2 
/ ro cy1 cy1 

) for the boundary conditions cited under item 6 in ri ’ ro sph sph 
Table 1 allows one to construct the plots shown in Figs. 7 and 8 .  The 

equations given as item 4 in Table 1 and the corresponding plots of 

Figs. 7 and 8 can be applied to predict the voltage drop across the 

double sheath once the double-sheath dimensions have been determined. 

These dimensions can be calculated using the procedures discussed in 

Ref. 3 .  

Although, the model inherent in the expressions of Table 1 and 

the numerical results of Figs. 7 and 8 appear to be valid when the 

ratio of electron collection current-to-contactor anode diameter is 

small, it generally yields voltage drops that are larger than those 

measured experimentally when this condition is not met. 

Specifically, the voltage drops measured experimentally from plasma 

potential profiles corresponding to large electron collection 

17 
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TABLE 1. Cylindrical and Spherical Double-Sheath Space-Charge Limited i Ana ly s is 

Cylindrical Equations: Spherical Equations: 

2 e 
"e) 1. V V - -- (n+- 

E O  
1. same 

2 .  J+ - e n+ 
SPh 

4 .  Non-Dimensional Definitions 

V a. 4 - -  
vi 

a. same 

b. same 

= *  j o  - * 
e 

c. j, - 
3/2 

e 
d. a - I 

+ m 

5 .  Non-Dimensional Governing Equation 5. 

6 .  Boundary and Space-Charge Limited Conditions: 

a. same 

b. same 

d4 = 0 at p=pi and p-1 c .  same 

dP 
c .  - 
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currents4 and small anode diameters (also see Appendix B) and 

contactors operating in the electron emission mode (see Appendices A 

and B) are smaller than those predicted to the model. In all of these 

cases, the experimentally measured inner boundary of the double sheath 

becomes less pronounced, the ratio of the inner/outer double-sheath 

dimensions increases and this means the sheath thickness increases. 

Contrary to experimental results obtained during these tests, the 

model inherent in Table 1 indicates that an increasing sheath thick- 

ness should induce an increase in the sheath potential drop. 

expected that models suggested by theoretical researchers5 which can 

include the effects of non-radial trajectories of the electrons being 

collected and ionization in the sheath will provide an explanation for 

the breakdown of the simple double-sheath proposed here under these 

conditions. 

E f f e c t s  of Ion Collecting S u r f a c e s  P l a c e d  vithin the Contactor 
Plasma Plume 

It is 

In order to determine if the observed deviations from the simple 

double-sheath model observed in experiments involving high electron 

collection currents and/or small anode diameters were caused by 

different ion production/Loss mechanisms, an experiment was conducted 

in which a relatively large ( 5  cm diameter), electrically floating, 

screened plate was placed within a typical, well-defined collector 

plasma plume region. 

ions from the collector plasma plume at a rate which would 

significantly distort the plasma plume geometry. 

conducted when the contactor was collecting 600 mA from the ambient 

plasma. 

It was believed that the surface would remove 

The experiment was 

The results obtained from the test are presented in Fig. 9 in 

22 
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the form of two comparative equipotential contour maps (one with the 

screen installed -5 cm downstream of the collector anode and one with 

no screen). 

to the ambient plasma potential, which was - 45 V in both cases. 
Comparison of Figs. 9a and 9b shows that placement of the 5 cm 

diameter plate parallel to and concentric with the anode does modify 

the shape of the contactor plasma plume. 

it to collapse radially inward toward the collector cathode, it caused 

the plume to expand radially. 

conditions for Figs. 9a and 9b were nearly identical (specifically, 

the plasma density was 2 x lo7 ~ m ' ~  and the electron temperature was 

7.0 ev). Although placing the 5 cm diameter plate in (and presumably 

removing ions from) the plume altered its geometry no conclusive data 

was obtained which proved that the geometrical changes obsemed when 

one reduces the anode diameter or the increases electron collection 

current are related to changes in the rate of ion production or loss 

rates occurring within the collector plasma plume. 

E f f e c t s  of Flowrate on Double-Sheath Geometry 

The plasma potentials shown in this figure are referenced 

However, instead of causing 

It is noted that the ambient plasma 

In addition to anode size and electron collection current, 

contactor flowrate (and indirectly system background pressure) can 

also influence the geometry of the contactor plasma plume and the 

double sheath. In order to demonstrate the effects of flowrate on the 

sizes and geometries of the double sheath and collector plume, an 

experiment was conducted in which collector flowrate was varied, 

potential profile data were collected and Fig. 10 was constructed. 

shows four equipotential contour plots corresponding to contactor 

flowrates of 2.7, 4.1, 7.0 and 11 sccm (Xe). Note that the 

It 
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equipotential contours are measured with respect to the ambient plasma 

potential. The lowest flowrate required a large sheath potential drop 

(72 V) in order to collect the 1 A of electron current. 

sheath potential drop is required in order to produce the ion current 

which counterflows through the space-charge limited region since fewer 

neutral atoms are present at this flowrate condition (see Appendix B). 

As the flowrate Ls increased to progressively higher values, lower 

sheath potential drops are observed and the geometry of the double 

sheath changes. 

observed between the four flowrate conditions are believed to be 

induced by changes in the locations at which ion production and loss 

occurs and by the fact that one double-sheath boundary remains tied to 

the anode. 

This large 

Both the geometrical and sheath potential differences 

The potential difference that develops between an ambient plasma 

and a simulator and the magnitude of the electron current being 

emitted at the simulator exhibits a strong influence on the ambient 

plasma density in ground-based tests. 

controlled to some extent by contolling this potential difference, but 

noise is encountered if the ambient plasma density becomes too great. 

Ambient plasma density can be 

Simple first-order cylindrical and spherical double-sheath models 

have been developed and they can be used to predict the potentials and 

dimensions associated with a double sheath, unless the ratio of 

electron collection current-to-anode diameter becomes too large. This 
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double-sheath model does not appear to apply directly to the electron 

emission process as suggested in Appendix B. 

Both collector flowrate and the presence of surfaces on which 

ions could recombine can effect the geometry of a double sheath. 

These results suggest that ionization occurring within a collector 

plume influcence the shape and potential drop associated with a 

collector double sheath. 
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Abstract 
An experimental study of plasma contacting 

with an emphasis on the electron collection mode of 
this process is described. Results Illustrating 
variations In plasma property profiles and 
potential differences that develop at hollow 
cathode l a m a  contactors are presented. A model 
of the eyectron collection plasma contactin 
process that is consistent wlth experimenta ly 
measured results is reviewed. The shortcomings of 
1 aboratory results as direct predictors of 
contactor performance in space and their 
usefulness in validating numerical models of the 
contacting process, that can be used to predict 
such performance. are discussed. 

4 

Iotroduction 
Objects placed in a space plasma collect and 

emit charged particles and they can as a result 
accumulate net electrical charge. Because the 
capacitance of a typical spacecraft surface is 
small, this net charge accumulation can cause the 
potential of such surfaces to change rapidly and 
dramatically. A space plasma contactor serves to 
prevent this problem by providing low impedance 
electrical connections between spacecraft surfaces 
and space plasma thereby preventing gross 
spacecraft charging' and between spacecraft 
surfaces that are isolated from each other thereby 
preventing differential cha ing.2 It can also 

(local space plasma potential) so the effects of 
the bias on an instrument can be reflected in the 
analysis of the data It collects. 

In all of these applications the contactor 
enables the achievement of mission objectives by 
preventing detrimental charging effects. They are, 
however, applications in which the contactor is 
required to handle currents that are typically 
small and it can conduct them without substantial 
voltage differences developing. On the other hand, 
plasma contactors can be used as active elements in 
such circuits as those associated with 

serve to establish a firm re '9 erence potential 

Work supported by NASA Lewis Research Center 
under Grant NAG3-776. 

'Research Assistant, Department of Mechanical 
Engineering. 
Professor, Department of Mechanical Engineering, 
Member AIM. 

** 

Copyright %, 1989 by the American Institute of Aeronautics 
and Astronautics, Inc. No copyright is asserted in the 

United States under Title 17, U.S. Code. The US. Co\ern- 
menr has a ro)alty-frcc license to evxcisc all rights under 
the copyright claimed herein for Gowrnmental purposes. 

All other rights are resersed by the cop)right owner. 

electrodynamic tethers' where large currents must 
be conducted and larger voltage differences are 
expected. On the basis that a contactor that would 
erforn well at high current levels would B enerally 

!e suitable for use in less demanding appl cations, 
this pa er will focus on contactors suitable for 

appl i cat ions. 
Typically an electrodynamic tether system 

includes two spacecraft connected by a long 
conductive wire or tether in the manner suggested 
in Fig. 1. When oriented ro erly, the tether will 
cut across geomagnetic fie d ines as it moves in 
orbit and as a result a voltage difference will be 
induced between its two ends. In order to take 
advantage of this voltage dtfference to generate 
direct current power, a return path for the current 

use in R igh current (electrodynamic tether) 
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tha t  could f l o w  through the tether and an 
e lec t r i ca l  load must be provided. Figure 1 
i l l u s t r a t e s  a scheme proposed t o  provide th i s  
re tu rn  path through the ionosphere v i a  plasma 
plumes that serve as e lec t r i ca l  brushes or 
ionospheric plasma contactors. As the f igure 
suggests, i t  i s  desirable t o  separate t h i s  overal l  
contacting process i n t o  near and f a r - f i e l d  
processes. The near - f ie ld  process i s  assumed t o  
re f l ec t  e f fec ts  associated with current conduction 
between adjacent, s t a t i c  plasmas. The f a r - f i e l d  
process, on the other hand, i s  assumed t o  r e f l e c t  
effects associated with re la t i ve  motion between two 
plasmas, which are exchanging current, as well  as 
current f low through the geo-scale plasma. 

An electrodynamic tether w i l l  generate power 
e f f i c i e n t l y  provided the load impedance i s  large 
compared t o  the sum o f  the impedances associated 
w i th  the tether, the ionosphere and the two 
contactors shown (one co l lec t ing  electrons and the 
other emit t ing them). Hence, an important 
character ist ic o f  a plasma contactor i s  tha t  i s  
exh ib i t  a low voltage drop t o  ambient lasma a t  
typical  operational current levels. Eyectrons a r e  
i den t i f i ed  as the pr incipal  car r ie rs  o f  t h i s  
current i n  Fig. 1 (because they a r e  l e s s  massive 
and therefore more mobile than ions), but i t  should 
be recognized that ions are also present and they 
f l o w  i n  a d i rec t ion  generally opposite t o  that  o f  
the electrons. Although the ions do not conduct 
substantial current, i t  w i l l  be shown tha t  they 
play an important role i n  determining the 
contactor-to-ambient plasma potent ia l  dif ference 
and i t  i s  therefore important t o  remember tha t  they 
are present. - 

A review o f  the desirable character ist ics o f  a 
plasma contactor (e.9. r e l i a b i l i t  s i  l i c i t y ,  low 
expellant and power demands as we!i asgow 
in edance coup1 ing capabi 11 ty) has suggested tha t  a 
horlow cathode discharge represents an a t t rac t i ve  
contactor compared t o  other  alternative^.^^ Key 
features o f  a hollow cathode and the mechanisms by 
which it produces a discharge are i l l u s t r a t e d  i n  
Fig. 2. It consists o f  a small diameter (o f  order 
1 cm) re f rac to ry  metal tube that i s  electron-beam 
welded t o  a thor iated tungsten o r i f i c e  plate. 
Located w i th in  and e l e c t r i c a l l y  connected t o  the 
tube i s  a l o w  work function inser t  from which 
electrons are emitted. An anode, biased posi t ive 
of the hollow cathode and located i d l a t e l y  
downstream o f  it, co l lec ts  a f rac t ion  o f  the 
electrons being drawn through the cathode o r i f i ce .  
The remaining f rac t ion  can be dram i n t o  plasma 
plumes l i k e  those shown i n  Fig. 1. 

The hollow cathode discharge i s  generally 
i n i t i a t e d  by f lowing an expellant gas such as xenon 
through the cathode tube and o r i f i ce ,  applying 
power t o  the heater t o  ra ise  the inser t  temperature 
t o  themionic  emission levels and applying a bias 
on the anode tha t  can range, depending on inser t  
temperature, from a few hundred t o  several thousand 
volts. Once the inser t  be ins t o  emi t  electrons a 
dense plasma i s  formed wit!in the cathode and a 
discharge i s  established between t h i s  plasma and 
the anode through the o r i f i ce .  
of a hollow cathode has suggested' that  the 
following physical processes, inferred by the 
p a r t i c l e  motions i n  Fig. 2, are active: 

A detai led study 

1. Primary electrons emitted from the inser t  
surface v ia  a field-enhanced thermionic emission 
process a r e  accelerated i n to  the cathode i n t e r i o r  
plasma through a sheath a t  the inser t  surface. 
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Fig. 2. Hollow Cathode Phenomenological Schematic 

2. These electrons acquire su f f i c ien t  energy 
as they pass through the sheath so they can 
ionized neutral atoms present i n  the hollow 
cathode i n t e r i o r  through mult istep, i ne las t i c  
col 1 i sion processes. 

3. Neither electrons tha t  or ig inate a t  the 
inser t  surface nor those resu l t ing  f rom ioniza- 
t i o n  can reach the inser t  surface because o f  the 
adverse potent ia l  gradient tha t  exists i n  the 
sheath between the cathode i n t e r i o r  plasma and 
the inser t  surface. Consequently, they must 
leave the cathode i n t e r i o r  plasma through the 
o r i f i c e  a t  a ra te  equal t o  t h e i r  supply rate. 

4. Ions created w i th in  the cathode, on the 
other hand, generally w i l l  not go throu h the 
o r i f i c e  because o f  the adverse potentia! they see 
between the cathode i n t e r i o r  plasma and the 
plasma downstream o f  the o r i f i ce .  They instead 
bombard cathode i n t e r i o r  surfaces heating them 
and, i n  the case o f  the insert ,  helping t o  
maintain i t s  temperature a t  the level  needed t o  
sustain thermionic electron ai s s i  on. 

5. Ions recombine a t  the wall surfaces they 
reach and re-enter the cathode i n t e r i o r  plasma as 
neutral atoms. Neutral atoms must leave the 
cathode i n t e r i o r  through the o r i f i c e  a t  t h e i r  
supply rate. 

6. As electrons pass through the o r i f i c e  they 
are accelerated through a several v o l t  potential 
dif ference which gives them su f f i c ien t  energy so 
they can ionize some o f  the neutral atoms tha t  
are escaping through the o r i f i c e  with them. 

7. The ions and electrons downstream o f  the 
o r i f i c e  const i tute the plasma plume that i s  
essential t o  the plasma contacting process. 
These species are l o s t  by e i ther  going t o  nearby 
surfaces (e.g. the anode or  cathode) where they 
recombine o r  through the interface between the 
contactor plume and the near- f ie ld ambient plasma 
shown i n  Fig. 1. 
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aratus and P rocedu res 

I n  order t o  study the plasma contacting 
process ex erimental l y ,  the apparatus shown 
schematicaely i n  Figs. 3 and 4 was constructed 
Physical ly t h i s  apparatus consists o f  two hollow 
cathode devices, one (shown a t  the r i g h t  o f  each 
f igure and labeled "simulator" used t o  generate a 

the l e f t  and labeled "contactor") used t o  enerate 

the ambient plasma to  induce current flow. Also 
shown are the power supplies and instrumentation 
needed t o  sustain and measure the character ist ics 
o f  the plasmas produced. The simulator and 
contactor hollow cathodes are separated by 2.7 n 
and are located w i th in  a 1.2 m dia. by 5.3 a~ long 
vacuum chamber. They both u t i l i z e  cathodes w i th  
6.4 m dia. o r i f i ce  plates and inserts that  were 
fabricated by r o l l i n  0.013 m t h i ck  tantalun f o i l s  
i n t o  the shape o f  a %ollpw cyl inder and t rea t ing  
them wi th  chemical R-500 . 

The o r i f i c e  i n  the simulator cathode i s  
0.38 ma i n  diameter and i t s  anode i s  a so l i d  3.0 cm 
dia., 0.25 mn t h i ck  tantalum p la te  oriented 
para l le l  t o  the o r i f i c e  p la te  and separated from i t 
b a distance tha t  could be varied from 1 t o  5 1110. 
T i  e o r i f i c e  i n  the contactor cathode Is, on the 
other hand, 0.76 m i n  dla. I t s  anode i s  a 12 CR 
dia. stainless steel p la te  w i th  a 1 cm dia. 

simulated ambient plasma and t b e other (shown a t  

a contactor plasma plume tha t  i s  biased r e  9 at ive  t o  

Fig. 3. Mechanical Schematic Diagran 

d 
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Fig. 4. E lec t r i ca l  System Schematic 

tantalum inser t  having a 5 m dia. o r i f i c e  i n  it. 
The anode plate, inser t  and o r i f i c e  a r e  a l l  located 
concentric wi th the cathode centerl ine on a plane 
-2 mn downstream o f  the cathode o r i f i c e  plate. 

Typical tests were conducted by heating the 
contactor and simulator cathodes t o  temperatures 
where s ign i f i can t  thermionic electron emission 
could occur (-1300 K), establ ishing high expellant 
(xenon) flowrates through them, and biasing t h e i r  
anodes pos i t i ve  using the discharge supplies t o  
i n i t i a t e  cathode-to-anode discharges a t  each 
device. Ne$, the.desired contactor and simulator 
f lowrates (m and m ) and discharge current levels 
(J and J 5 were gstablished; the.contactor was 
bisqed re l%ive t o  the simulator using the bias 
power supply; and vo l ta  e, current and robing 

currents measured dur in t y  i c a l  t e s t s  a re  
designated by the symbo7s stown within the c i r c les  
i n  Fig. 4; they include the contactor and simulator 
discharge currents and voltages (J J V and 
V ), the bias voltage between theC!hdg;orC!nd 
sfhulator (V ) and the contactor and simulator 
electron emifsion currents (J and J ) .  

The two switches shown aiEthe co%actor and 
f imulator i n  Fig. 4 are positioned a t  e i ther  the 

EE" o r  "EC" posi t ion depending on whether the 
contactor i s  biased negative o f  the simulator and 
therefore Emitt ing Electrons (EE) o r  biased 
pos i t i ve  and therefore Collect ing Electrons (EC), 
It i s  necessary t o  posi t ion these switches properly 
f o r  each operating mode t o  assure that intent ional  
l im i ta t i ons  imposed on the discharge current levels 
J and J do not resu l t  i n  unintentional 

/ik!tation$Dbeing imposed on the electron emission 
o r  co l lec t ion  currents.' 

instrument data were co 7 lected. The voytages and 

The tank bias switch shown i n  Fig. 4 was 
ins ta l l ed  so the vacuum tank could be allowed t o  
f l o a t  re la t i ve  t o  the contactor/simulator system or 
be connected t o  the simulator. Tests conducted t o  
investigate the e f fec ts  o f  changes i n  the posi t ion 
o f  t h i s  switch on p lasm and performance data have 
suggested tha t  It has no Signi f icant e f fec t  on a 
contactor co l lec t ing  electrons. On the other hand, 
when the contactor i s  emit t ing electrons and the 
switch i s  closed, most o f  the electron current i s  
drawn t o  the tank while most o f  t h i s  electron 
emission current must f low t o  the simulator when 
the tank i s  f loat ing.  
switch open was therefore found t o  induce higher 
bias voltages and current f low and plasma density 
patterns tha t  tended t o  be concentrated along the 
tank center1 in8  rather than being d i  s t r i  buted 
uniformly i n  the tank. This occurred because a l l  
o f  the emitted electrons were being forced i n t o  
co l lec t ion  a t  the simulator and t h i s  d is to r ted  the 
current f l o w  patterns away from the spherical 
symetry  tha t  would be expected i n  space. 
t o  conduct tests tha t  were considered t o  be more 
representative o f  those expected i n  space, t e s t s  
described herein were generally conducted with the 
tank bias switch closed. Any data col lected with 
t h i s  switch open, w i l l  be i den t i f i ed  spec i f i ca l l y .  

Emitt ing electrons w i th  t h e  

I n  order 

The plasma environment produced between the 
contactor and the sjmulator was probed using the 
various instruments shown i n  Fig. 3. These 
instruments, the function they serve and the 
physical volume i n  which they can be used are: 

bfssfve  Robe - This sensor and the 
associated c i r c u i t r y  system, which a re  s im i la r  t o  

*Chemical R-500 i s  a double carbonate (BaCO , SrCO ) low work function mixture ORIGWU. PAGE 1s tha t  has been made by J.T. Baker Co. but i j  no lo2ger i n  production. 
OF POOR QUALITY 
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those used by Aston,a y i e l d  plasma potent ia l  data 
d i rec t l y .  
downstream from the contactor t o  the simulator 
and/or rad ia l l y  along an arc that extends f rom 
the tank/contactor centerl ine out t o  a radius o f  
-30 cm. Probe output voltage ( i .e.  plasma poten- 
t i a l )  and posi t ion are recorded simultaneously on 
an X - Y  p l o t t e r  t o  assure well-correlated values 
o f  the data. 

i s  a 3.2 ma d ia  stainless steel sphere that can 
be moved conveniently i n t o  any posi t ion occupied 
by the emissive probe. 
character ist ic curves recorded a t  these posit ions 
are analyzed using a two electron-group numerical 
model' that  i s  assumed t o  describe plasmas such 
as these. This analysis y ie lds  the density and 
temperature o f  a Hawel 1 ian  electron group and 
the density and energy o f  a primary (or mono- 
energetic) electron roup. This analysis i s  

determined using the emissive probe a t  each 
locat ion where Langntuir probe data are collected. 
The c i r c u i t r y  together wi th addit ional de ta i l  
about the numerical procedures used t o  obtain 
p lasm information have been described 
previously. 1 0  

Shultz-Phclpt Ionizatioa huge - This 
c o m r c i a l l y  avai lable pressure gauge11 was 
modified by removing the glass enclosure around 
the sensor so erturbations t o  s t a t i c  pressure 
measurements tga t  could have been induced by gas 
flows throu h the cathode, would be minimized and 
SO I t s  spatqal resolut ion would be improved. 
This probe was used t o  Deasure the ambient 
pressure d is t r ibu t ions  over the same region swept 
by the emissive and Langmuir probes. Neutral 
atom density d is t r ibu t ions  were computed f rom 
these data by applying the perfect  gas state 
equation and assuming the ambient gas was i n  
equi l ibr ium wi th  the vacuum tank walls a t  a 
temperature o f  300 K. Because gauge readouts 
f r o n  t h i s  device are inaccurate when a plasma i s  
present, the measurements were made only when the 
cathodes were a t  operating temperatures and 
flowrates and the plasma discharges were 
ext ingui  shed. 

Retarding Potential Analyzer - The sensor on 
t h i s  i ns t rumnt  was designed so i t  could be swept 
through an arc tha t  passed through the tank 
centerl ine, was centered a t  the cathode o r i f i ce ,  
and had a radius o f  about 18 cm. I n  the course 
of Roving through t h i s  arc i t s  aperture remained 
pointed a t  the cathode o r i f i ce .  It was biased so 
i t  repel led both electrons and low energy Ions 
and therefore sensed the current density o f  high 
energy ions tha t  approached i t  fron the locat ion 
of the cathode. 

The sensor can be swept ax ia l l y  

L m i r  Probe - The sensor used on t h i s  probe 

Probe current/voltage 

aided by inputt ing p 9 asma potent ia l  data 

Resu'its 
When a typ ica l  hollow cathode plasma contactor 

i s  biased re la t i ve  t o  an ambient plasma and the 
voltage dif ference between it and the ambient 
plasma i n  contact w i th  i t  i s  measured as a function 
of the electron current being emitted, data l i k e  
those shom i n  Fig. 5 are obtained. These 
par t i cu la r  data were obtained a t  a contactor 
discharge current (J ) o f  0 . 3  A and an expellant 
f lowrate (h o f  4.1'Qtandard cubic centimeters per 
second (scchl o f  xenon. Under these conditions the 
ambient neutral 6gas pressure (P ) i n  the vacuum 
tank was 5 x 10- Torr and the clntactor discharge 

PAGE 9s 
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voltage ( V  ) varied over the range f rom 12 t o  20 V 
as the e legbon emission current (J 
f rom +lo00 m~ t o  -1000 m ~ .  The con'iictor potent ia l  
p lo t ted  on the horizontal axis i n  th i s  f igure i s  
actual ly the difference between the contactor anode 
o r  cathode potent ia l  ( V  ) and the ambient plasma 
potent ia l  ( V  ) sensed bJ an emissive probe located 
-1 m downstr@am o f  the contactor. The data o f  
F i  5 show the contactor potent ia l  remains near 
-2Z .V  when the contactor 1 s emitt ing electrons 
(second quadrant) and that the contactor r ises t o  
about 50 V when the contactor i s  co l lec t ing  
electrons (i .e. f o r  negative emission currents i n  
the fourth quadrant). 

The curve i n  the fourth quadrant o f  F i  
shows tha t  the magnitude of the electron co l ec t i on  
current increases rather suddenly a t  a potenti  a1 
dif ference o f  -40 V where the " t rans i t ion  t o  
ign i ted  mode' operation i s  iden t i f ied .  This 
t rans i t i on  has general1 been observed t o  occur as 
contactor potent ia l  i s  Ybeing increased I t s  onset 
i s  accompanied by the appearance o f  a b r igh t  
luminous glow that t yp i ca l l y  extends several 
centimeters from the contactor and i s  somewhat 
spherical i n  shape. It i s  believed that t h i s  
luminosity i s  caused by the de-excitat ion o f  xenon 
atoms tha t  have been excited by electrons being 
drawn (streaming) toward the contactor. It i s  
presumed t h a t  some lonizat ion i s  also induced along 
with these exci tat ion reactions. 

Electron Col l e c m  

the region inmediately downstream o f  a contactor 
co l lec t ing  electrons, data l i k e  those shown i n  
Fig. 6 are obtained. This f i  ure includes both a 

) was varied 

4.  

When plasma potent ia ls a r e  measured throughout 

raised potent ia l  map, which c s ear ly shows the 
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structure o f  the plasma f i e l d  around the contactor 
qua l i ta t i ve ly  and an equipotential contour map from 
which quant i ta t ive information about the potent ia ls  
can be obtained. These two p lo t s  show the plasma 
f i e l d  consists of two r e l a t i v e l y  uniform potent ia l  
plasma regions separated by a r e  ion i n  which the 
potent ia l  gradients are large. Zince nei ther 
magnetic f i e l d  nor c o l l  i s i o n a l l y  induced impedances 
are present i n  the region where the potent ia l  
changes rapidly,  t h i s  must be a sheath region,'Z 
i.e. one i n  which charged p a r t i c l e  acceleration i s  

plasma are drawn toward the contactor plasma plume 
and ions from t h i s  plume are drawn toward the 
ambient plasma. On the other hand, ions from the 
ambient plasma and electrons from the contactor 
plume are both ref lected a t  the sheath. The ion 
and electron Currents that  can be drawn through the 
double-sheath region are 1 imited by the space- 
charge effects Suggested by the net accumulations 
o f  pos i t i ve  and negative charge shown, 
respectively, upstream and downstream o f  the sheath 
midpoint i n  the bottom sketch of Fig. 7 .  

occurring. 

On the basis o f  the typ ica l  data o f  Fig. 6 one 
can propose the model o f  the near - f ie ld  electron 
co l lec t ion  process sug ested by Fig. 7. This model 

quasi-neutral plasma i n  the region i m d i a t e l y  
adjacent t o  the contactor separated from a lower 
density quasi-neutral ambient plasma by a double- 
sheath (o r  double-layer). As the centerl ine plasma 
potent ia l  p r o f i l e  i n  t h i s  f igure  suggests, 
electrons and ions counterflow through the double- 
sheath. 

involves a r e l a t i v e l y  li igher density plume o f  

Specifically, electrons from the ambient 

f 
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Fig. 6. Typical Potent ia l  Variat ion near a 
Contactor Collect lng Electrons 

When l a m a  propert ies are measured along the 
vacuum tan!/contactor center1 ine through a typ ica l  
double-sheath, data l i k e  those shown i n  Fig. 8 are 
obtained. These resu l ts  suggest plasma conditions 
do vary i n  a way t h a t  i s  consistent w i th  the model 
o f  Fig. 7 (note tha t  the zero voltage f o r  the p lo ts  
o f  Figs. 6 and 7 I s  the ambient plasma potent ia l ,  
while tha t  for Fig. 8a i s  the simulator cathode 
potent ia l ) .  Figures 8b and c indicate the high 
density and ambient plasmas are both composed of 
primary (monoenergetic) and Maxwell ian electron 
groups. They show the Maxwellian temperature and 
density and the primary energy and density a l l  
remain constant a t  about 6 eV, 4 x IO7 cm:', 40 eV 
and 3 x IO6 cm-3 respectively, i n  the ambient 
plasma region f o r  t h i s  case where -370 mA of 
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electrons are being collected. 

It i s  noted t h a t  the energy o f  the rimary 
electrons i n  the ambient plasma (Fig. Scp i s  
approximately equal t o  the simulator cathode-to- 
ambient plasma potent ia l  difference. This suggests 
that  these electrons are ones tha t  have been 
accelerated i n t o  the ambient plasma from the 
simulator hollow cathode and have had few energy- 
degrading co l l is ions.  It should be noted tha t  the 
r a t i o  o f  r iaary - to -kxwe l l  ian electrons i n  the 
ambient peasma i s  small (usually less than 10% as 
i n  the case o f  the data o f  F i  . 8). The data o f  
Fig. 8b show the density o f  tffe Maxwellian 
electrons u stream o f  the double-sheath drops 
rap id ly  w i t R  distance from the contactor cathode 
The f l o o r  symbol d ram on Fig. 8b near the doub1;- 
sheath locat ion indicates that  the Maxwellian 

Theoretical Model of Electron Collect ion 

Conversion o f  the basic physical model o f  
near - f ie ld  electron co l lect ion i n t o  a quant i tat ive 
model requires that  the unknowns o f  the problem 
(sheath locat ion and voltage drop f o r  example) be 
expressed mathematically i n  terms of such known o r  
contro l lab le parameters and variables as the 
current being col lected and the ambient and 
contactor plume plasma densi t ies and temperatures. 
An elementary theoret ical  model o f  the electron 
co l lec t ion  process has been developed and ver i f ied  
using experimental resul ts  obtained i n  the 
laboratory. 1 3  The essential features o f  t h i s  model 
r e f l e c t  the observations that  1 the surface area 
of the downstream boundary o f  t I e double-sheath i s  
determined by the electron current being col lected 
and the random electron current density i n  the 
ambient plasma, 2) the surface area o f  the upstream 
boundary o f  the double-sheath i s  determined by the 
space-charge-1 imited ion current that  must f low 
across the sheath a t  a current density defined by 
the Bohm condit ion f o r  a stable sheathl' and 3)  the 
voltage drop across the sheath i s  determined by the 
requirement that  ions and electrons flow across the 
sheath a t  t h e i r  space-charge-1 imited levels.  1 5  

spherical ly symmetric and that  i t  occurs over a 
f u l l  4s steradian so l id  angle, then the f i r s t  
condit lon i den t i f i ed  i n  the previous paragraph 
requires that  the outer radius o f  the double-sheath 
( ro)  be given by 

If it  i s  assumed that  electron co l lect ion i s  

I i s  the magnitude o f  the electron 
current, e i s  the electron charge, n 

are the ambient plasma density and elecfron and T 
tempe%ure, k i s  Boltzmann's constant and me i s  
the electron mass. 

Imposition o f  the second condi t ion f o r  the 
same case leads t o  the fo l lowing expression f o r  the 
inner radius o f  the double-sheath 

density and temperature were not measurable a t  t h i s  
locat ion because the primary electron signal t o  the 
Langmuir probe overwhelmed the Hamel l ian one. The 
data of Fig. 8c show the primary electron density 
upstream o f  the sheath js more than an order o f  
magnitude greater than that  downstrean. The 
primary electron density u stream o f  the sheath i s  
also seen t o  increase as tRe distance from the 
contactor decreases probably because these 
electrons are being concentrated as they stream 
rad ia l1  inward toward the cathode. Final ly,  it sheath 
should 
electrons i n  the region upstream o f  the sheath (35 
t o  45 V )  i s  roughly equal t o  the sheath potent ia l  
drop ( V  ). This s gests that  the primary 
electroa! found i n  #e high density plums are 
indeed those tha t  have been accelerated across the 
sheath from the Maxwellian electron group i n  the 
ambient plasma. 
proposed physical model o f  the electron co l lect ion 
process. 

I n  Eq. 2, J i s  the ion current belng supplied t o  
the sheath hom the contactor plume, n. and T . are 
the plasma density and electron temperature ia'the 
contactor plume, y i s  a pre-sheath correct ion 
parameter tha t  i s  projected t o  have a value o f  0 .3  
based the laboratory tests.13 and m i s  the mass o f  
the ions being supplied from the pl8me. 

voltage drop (VsH) that  develops across the double- 
Imposition o f  the t h i r d  condition y ie lds the 

noted that  the energy o f  the primary 

(3)  

This resu l t  also supports the I n  t h i s  equation c i s  the p e r m i t t i v i t y  o f  f ree 
space and j i s  a Barameter determined by the 
solut ion toothe spherical space-charge-1 i m i  ted, 
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double-sheath problem.15 The var iat ion o f  t h i s  
parameter as a function o f  double-sheath radius 
r a t i o  i s  reproduced from Ref. 15 i n  Fig. 9. 

l f i  The E f f  n r ‘ i  
Behavior 

preceedlng equations t o  be Val id, the contactor 
plume should be spherical and the ion and electron 
currents should both be flowing a t  t h e i r  space- 
charge l im i ted  values. This means that the ion 
current f lowing from the contactor plume t o  the 
ambient plasma (J,) must given by 

I n  order f o r  the model expressed i n  the 

where a i s  a parameter determined from the solut ion 
o f  the space-charge current f l o w  problem.” The 
var ia t ion  i n  t h i s  parameter w i th  double-sheath 
radius r a t i o  i s  reproduced from Ref. 15 i n  Fig. 10. 

ion  current denslty f lowing across a typ ica l  
double-sheath, as a function o f  the electron 
current being col lected through tha t  sheath. These 
measurements were made w i th  the retarding potent ia l  
analyzer positioned on the tank centerl ine under 
conditions where the double-sheath radius r a t i o  d id  
not change s ign i f i can t l y  as co l lec t ion  current was 
varied. This f igure  demonstrates tha t  the aeasured 

Figure 11 shows the e f fec t  o f  changes i n  the 
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Fig. 10. Effect  o f  Radius Ratio on Counterflowing 
Current Ratio 

functional re lat ionship between the ion and 
electron currents ( l inear )  i s  i n  excel lent agree- 
ment wi th Eq. 4. Measurement o f  the azimuthal 
var ia t ion  i n  the ion current density through a 
typ ica l  sheath using the retarding potent ia l  
analyzer and integrat ion o f  the resu l t ing  p r o f i l e  
y ie lds  a t o t a l  ion co l lec t ion  current that  agrees 
quant i tat ively w i th  the predict ion of Eq. 4 t o  
w i th in  a factor o f  two. These resu l ts  are 
considered t o  be a ve r i f i ca t i on  that ion and 
electron current f l ows  through typical  double- 
sheath are space-charge-limi ted. 

The rather sudden increase i n  electron 
co l lec t ion  current shown i n  the data o f  Fig. 6 that  
i s  accompanied by the development o f  luminosity i n  
the high density plume region i s  an important 
phenolaenon. When t h i s  t rans i t i on  i n to  the ign i ted  
mode o f  electron co l lec t ion  occurs, the slope of 
the current/vol tage character ist ic becomes more 
negative and lower sheath vo l ta  e drops are 

It i s  believed tha t  t h i s  occurs because electrons 
required a t  a given electron co 9 l ec t i on  current. 

P 
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Effect  o f  Electron Collect ion Current on 
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being collected, acquire su f f i c i en t  energy on 
passing through the sheath SO they can excite and 
ionize expellant atoms comin through the cathode 
or i f i ce .  The exci tat ion vouvd be expected t o  cause 
the observed increase i n  contactor plume 
luminosity, and the ionizat ion would be expected t o  
cause an increase i n  the ion current leaving the 
plume. This would i n  turn be expected t o  cause the 
observed increase i n  electron co l lec t ion  current 
(c.f .  Eq. 4).  

?nd ionizat io l j  reactions do occur t o  induce 

determine i f  the neutral atom density i s  su f f i c i en t  
t o  i ve  a reasonable electron-atom ine las t ic  
colPision frequency. The raised density and equal 
density contour p lo ts  o f  Fig. 12 show the axial  and 
rad ia l  var ia t ion  i n  xenon at- density le isured 
inmediately domstrean o f  the contactor a t  typical  
contactor (6 ) and simulator (rk ) f l o w  conditions 
which induce'the indicated ambidnt pressure Po). 
pressure leasurecnents by applying the perfect gas 
equation and assumin the as i s  i n  equi l ibr ium 
with the vacuum ch&r way1 a t  a temperature o f  

I n  order t o  assure that su f f i c ien t  exci tat ion 

ign i ted  mode operation, i t  i s  necessary t o  

These data have been computed on the basis o I 
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300 K. 
value a t  the contactor o r i f i c e  t o  background l e v e l s  
a t  distances several centimeters from it. 

Using data l i k e  those shown i n  Fig. 12, 
t yp ica l  ion production r a t e s  due t o  electrons 
streaming toward the contactor cathode can be 
computed. 1 6  Typical resul ts obtained from such 
calculat ions a r e  shown i n  Fig. 13 i n  the form o f  a 
p l o t  o f  integrated ion production r a t e  by electrons 
tha t  have streamed from the inner radius o f  the 
sheath t o  the radius values indicated on the 
horizontal axis. The calculat ions have been made 
f o r  two cases usin experimentally measured sheath 
voltage drops (V 7, sheath rad i i ,  etc. The curves 
indicate that  th8"ion production ra te  increases 
dramatical ly as the streamin electrons approach 
the contactor o r i f i c e  (r + 07 because the xenon 
density i s  highest there. The locat ion o f  the 
arrows on each curve (a t  - I cm) indicate the 
rad ia l  posit ions where the ion production due t o  
streaming electrons alone would be su f f i c i en t  t o  
sa t i s f y  the space-charge-1 imlted ion current 
c r i t e r i o n  a t  the electron current being col lected 

could be su f f i c ien t  t o  assure Bow voltage operation 
o f  a contactor co l lec t ing  electrons without 
including any ions produced i n  the hollow cathode- 
to-anode discharge. It i s  noted i n  t h i s  regard 
tha t  discharge produced ions a r e  generated 
su f f i c ien t ly  close t o  the cathode so they can 
recombine on hollow cathode o r  anode surfaces more 
read i l y  than ions produced by streamin electrons. 
It i s  considered l i k e l y  that  essentialyy a l l  ions 
produced w i th in  a few Debye shielding lengths o f  
the cathode ( Ident i f ied  i n  Fig. 13) by e i ther  
mechanism would be l o s t  t o  the cathode. 

It I s  considered t o  be pa r t i cu la r l y  noteworthy 
tha t  the discharge current (J ) a contactor may be 
reduced t o  zero without induc&/g a change i n  the 
sheath vo l ta  e drop once the contactor i s  
co l lec t ing  eyectrons stably i n  the igni ted mode 
This observation also supports the hypothesis o f  
substantial ion production by streaming electrons. 

They suggest the density drops f rom a high 

- -1.0 A). Hence i t  i s  suggested tha t  ion  
uct ion induced by streamin electrons alone 

Each contactor used on an electrodynamic 
tether w t l l  probably be designed as both an 
electron emitter and an electron col lector.  Since 
hollow cathode contactor o erat ion has been 

a t  r e l a t i v e l y  h i g l  current levels17~16 t h i s  mode 
demonstrated i n  s ace i n  t 1: e electron emission mode 

a 

to .011  

Fig. 13. Effect of Flowrate on Ion Production 
by Streaming Electr  ~RIGINAL PAGE 1s 
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has been considered less problematic. 
the ear ly e f f o r t s  a t  plasma probing and modeling 
the plasma contacting processes have focused on the 
less wel l  understood electron co l lec t ion  mode of 
contacting. Data showing t yp i ca l  sheath voltage 
drops have been measured i n  the laboratory, 
however, and these resu l ts  ( l i k e  those i n  Fig. 5) 
suggest t ha t  the sheath voltage drops are lower for 
the electron emission mode than f o r  the electron 
co l lec t ion  mode. 

measured f o r  a contactor emi t t ing electrons a t  a 
current l eve l  o f  1.25 A. These ma s d i f f e r  from 

they show no uniform plasma potent ia l  region 
adjacent t o  the contactor. Because such a region 
Is not a parent i t  has not been possible t o  apply 
the slmpye double-sheath model t o  t h i s  case even 
though electrons and ions would be expected t o  
counterflow a t  t h e i r  space-charge-limited leve ls  i n  
the electron emission mode j u s t  as they appear t o  
i n  the e lect ron co l lec t ion  mode. 

As a r e s u l t  

Figure 14 shows typ ica l  plasma potent ia l  maps 

those f o r  a contactor co l lec t ing  e ! ectrons because 
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Fig. 14. Typical Potent ia l  Variat ion near a 
Contactor Emitt ing Electrons a t  a High 
Current Level 

As the electron emission current level  i s  
reduced, the associated potent ia l  p ro f i les  begin t o  
show increased structure l i k e  that  i n  Fig. 15, 
where potent ia ls  tha t  r i s e  from zero i n  the ambient 
plasma t o  about 3 V before they drop below - 5  V i n  
the plasma adjacent t o  the contactor o r i f i c e .  I n  
t h i s  lower current case the potent ia l  hump (a t  -3 
V)  sug ests a net pos i t ive space-charge 
accumuqation develops, presumably because electrons 
streaming from the cathode wi th  substantial k ine t i c  
energies ionize neutral atoms and leave behind 
slow-moving ions.12 The reason why a potent ia l  
hump should develop a t  emission current 1 eve1 s 
(Fig. 15) and not h i  h ones (Fig. 14) i s  not 

which the hump i s  produced. A careful  analysis of 
the data has suggested the hump probably develops 
t o  an even greater extent a t  the higher current 
levels,  but the emissive probe does not measure i t  
properly. 
by recognizing tha t  an emissive probe; which i s  
being held a t  a r e l a t i v e l y  h i  h, but constant, 

f l o a t i n g  potent ia l  t ha t  i s  close t o  the t rue plasma 

apparent, however, i f t h i s  is the mechanism by 

This measurement e r ro r  can be understood 

temperature so i t  w i l l  emit e 3 ectrons; measures a 
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potent ia l  when i t  i s  i n  a l o w  density plasma. As 
i t  i s  moved in to  more dense plasmas however, i t  
f loats a t  potent ia ls that  drop progressively 
further below the true potent ia l  o f  the plasma. 
This occurs because the thermal current of 
electrons from progressively more dense plasma 
eventually exceeds the thermionic emission 
capab i l i t y  o f  the probe. 

I t i s  noted tha t  the data o f  Fig. IS were 
col lected under an operating condit ion that was 
essent ia l ly  the same as that  f o r  the case where the 
tank switch (Fig. 4) was open because t h i s  produced 
a more dramatic potent ia l  hump. Detailed studies 
o f  the electron emission Rode o f  operation are 
presently being conducted t o  determine why t h i s  
occurs and t o  develop an understanding o f  the 
electron emission process that w i l l  lead t o  a model 
that  can be used t o  describe it physical ly and 
mathematical 1 y . 

dina Laboratory Results t o  Soace 

It should be recognized that an ideal 
experimental simulation o f  the in-space plasma 
contacting process would involve s im i la r i t y  o f  not 
only the current levels and contactor hardware 
involved, but also the space environment. C l e t e  
simulation of t h i s  environment implies 1) s i x a r  
ambient i onic/atomic species concentrations, 2) 
s im i la r  ambient p lasm density and temperature 
levels, 3 )  s imi la r  magnetic f i e l d  in tens i ty  and 
r e 1  a t i ve  contactor/magnetlc f i e l d  veloci ty 
conditions, and 4) an ambient l a m a  that i s  not 
perturbed by vacuum chainber wafls o r  other 
apparatus during the conduct o f  the tests. I n  the 
present study these conditions have i n  general not 
been met. 

Speci f ical ly,  no attempt has been made t o  
simulate the ion ic  and atomic species o f  space; 
rather the background gas i n  the tests i s  
p r i nc ipa l l y  xenon coming from the contactor and 
simulator. fur ther,  -it has been found that 
electrons being emitted or  col lected by the 
contactor and simulator co l l i de  wi th the background 
gas and produce ions a t  a ra te  tha t  has a f a r  
greater inf luence on the ambient plasma density and 
temperature than does the simulator discharge 
current and voltage. As a resul t ,  ambient lasma 
densit ies used i n  the tests are substantialfy 
greater than those expected during the conduct o f  
space tests. This high p lasm density has the 
beneficial ef fect ,  h m v e r ,  o f  reventing the 
contactor plasma plw,double-s~eath from extending 
t o  and in te rac t i n  w i th  the vacuum chamber walls. 
I f  the tests had L e n  conducted a t  the low  
densit ies o f  s ace an unreasonably large vacuum 
chamber would Rave been required t o  prevent such an 
in te rac t ion  from occurring. 

While some ef fec ts  o f  changes I n  magnetic 
f i e l d  strength on the p lasm contacti  process 
have been examined' and been found toyave  a 
negl i  i b l e  inf luence on laboratory tes t  results, 
the e s fects o f  u net ic  f i e l d  s t re  t h  and re la t i ve  
motion a t  space p!asma density con3t ions  are not 
re f lec ted  i n  any t e s t  results. It i s  sug ested, 
however, tha t  the skin depth associated "7th a 
t y  i c a l  ionospheric l a s u  propagating a t  l ow  earth 
o rg i ta l  ve loc i ty  w i l !  be small compared t o  
contactor p lasm plume dimensions rea l f red  during 
the conduct of t yp ica l  space tests. Hence It i s  
a r  ued tha t  one may separate near and f a r - f i e l d  
effects i n  the manner suggested i n  Fig. 1 and tha t  
the tests conducted do r e f l e c t  the basic physics of 
the important near - f ie ld  phenomena. 

I t  i s  suggested on the basis o f  the review o f  
the differences between the 1 aboratory and space 
plasma experiments j us t  discussed that resul ts 
obtained f rom space t e s t s  may d i f f e r  substant ia l ly  
f rom those measured i n  laboratory tests. 
laboratory resul ts can, however, be used t o  
i den t i f y  phenomena that w i l l  probably be important 
i n  s ace, and they can serve t o  ca l ib ra te  numerical 
modefs of the contacting process19 that do r e f l e c t  
the ef fects o f  magnetic f ie lds ,  spacecraft motion, 
and accurate ionospheric properties. 

The 

Conclusions 

Plasma contacting represents an e f fec t i ve  
means o f  preventing various types o f  spacecraft 
charging problems and i t  i s  therefore an enabling 
technology i n  the many applications where t h i s  
phenomenon i s  l i k e l y  t o  occur. 

The near - f ie ld  plasma contacting process 
associated w i th  electron co l lec t ion  can be 
described using three d i s t i n c t  regions i n  which 
d i f f e ren t  p lasm properties and pa r t i c l e  
acceleration phenomena prevai l .  These are a 
contactor plasma plume region that i s  imnediately 
adjacent t o  the contactor, a double-sheath region 
and a near - f ie ld  ambient plasma r e  ion. 
these regions i t  i s  presumed the ef fects o f  motion 
o f  the near - f ie ld  plasma re la t i ve  t o  the 
ionospheric plasma and the magnetic f i e l d  w i th in  i t  
become important. 

Ions and electrons counterflow through the 
c o l l  is lonless double-sheath t o  conduct current 
between contactor and near - f ie ld  ambient plasmas 
biased re la t i ve  t o  each other. The outer boundary 
of t h i s  double-sheath i s  located such that i t s  
surface area i s  suff icient t o  co l l ec t  the electron 
current being drawn from an ambient p lasm 
characterized by a rescribed random electron 
current density. TRe inner boundary o f  the double- 
sheath i s  located such that i t s  surface area i s  
su f f i c i en t  t o  supply an ion current a t  a r a t e  that 
w i l l  sat isfy both the Bohm c r i t e r i o n  on sheath 
s t a b i l i t y  and the s ace-charge l i m i t  on ion 
extraction. The bufk o f  the voltage drop associ- 
ated w i th  the near - f ie ld  electron co l lec t ion  
process develops between these two boundaries o f  
the double-sheath. This voltage dif ference 
establishes i t s e l f  a t  a value tha t  w i l l  assure both 
the ion and electron currents flow a t  t h e i r  space- 
charge-limited values. 

Beyond 

Electron co l lec t ion  i s  most e f f i c i e n t  when the 
contactor i s  operating i n  the " igni ted mode". I n  
t h i s  operating mode, electrons streaming f rom the 
ambient plasma exci te and ionize expellant gas 
coming from the hollow cathode. Once operation i n  
t h i s  node develops i t  i s  possible t o  sustain the 
electron co l lec t ion  process without su ply ing power 
from the hollow cathode discharge supp!y. 
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Abstract 

Experimental results are presented which 
describe operation of and the plasma environment 
associated with a hollow cathode-based plasma 
contactor collecting electrons from an ambient, low 
density Maxwellian plasma when the boundary between 
the contactor and the ambient plasma is nearly 
hemispherical. Basic physical features of the 
process of electron collection identified on the 
basis of these results include a double-sheath 
across which a substantial potential difference can 
develop and substantial ionization of neutral gas 
coming from the cathode by the electrons being 
collected. 
diameter of the anode is too small to yield a 
hemispherical double-sheath are shown to induce 
distortion of this sheath but it is argued that the 
same basic phenomena are still active in this case. 
Data obtained in these experiments should serve to 
validate numerical models of this process that are 
being developed to predict plasma contactor 
performance in space. Preliminary performance and 
plasma property results measured on a contactor 
emitting electrons are examined and some physical 
elements of this process are identified. 

Experimental results obtained when the 

Jntroduction 

Hollow cathode-based plasma contactors have 
been shown to be effective in mitigating the 
undesirable charging of sate1lites.l 
function of a plasma contactor is to create a 
highly conductive plasma in the region surrounding 
a satellite that can be used as a medium of current 
exchange to reduce voltage differences between the 
satellite and the local ionospheric plasma. 
Typically, the potential differences and current 
levels associated with this discharging process are 
small. 
electrodynamic tether application where relatively 
large currents must be exchanged with the 
ionosphere, however, potential differences would 
generally be expected to be greater. 
large potential drop at a plasma contactor could 
seriously degrade the performance of an 
electrodynamic system,2 it is important that one be 
able to understand, predict and control plasma 
contactor performance to prevent such voltage 
drops. 

In general, two plasma contactors (one 
emitting electrons to the ionospheric plasma and 
one collecting them from it) are required t o  
complete the circuit of a typical electrodynamic 
tether system. 

The basic 

When a plasma contactor is used in an 

Because a 

A hollow cathode discharge' has 
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been proposed as a suitable plasma source for both 
of these contactor applications and these devices 
have been used to conduct the tests that are the 
basis of this paper. 
laboratory tests of hollow cathode contactors 
examined in these tests are similar to the near- 
field portionS of the plasma contacting process 
that will occur in space. 

The operation of a contactor collecting 
electrons (i.e. one biased positive of a simulated 
space plasma so it will collect electrons) has 
received substantial experimental research 
attention.S This work has shown 1) a double- 
sheath develops between the contactor and ambient 
plasmas, 2) streaming electrons being collected 
ionize neutral atoms supplied through the cathode 
which can induce a more efficient mode of electron 
collection (ignited mode operation3 4 ,  and 3) the 
double-sheath that develops in such tests can have 
a hemispherical shape and if it does, such 
characteristics as its position and the voltdge 
drop across it ran be described by a simple 
spherical double-sheath model3 * .  This model 
describes phenomena occurring in three different 
regions, namely a high density, high conductivity 
plume adjacent to the contactor (the contactor 
plasma); a dilute plasma surrounding the contactcr 
plasma which simulates the ionospheric plasma (.h 
ambient plasma); and a relatively thin region 
between these two plasmas in which both the ion and 
electron flows are space-charge limited (the 
double-sheath region). 

The intent of this paper will be 1) to present 
contactor performance and plasma property data 
associated with collection of electrons under 
conditions where a nearly hemispherical double- 
sheath develops, 2) to show that these results are 
consistent with the simple, spherical double-sheath 
model of the process, 3) to present similar data 
associated with operation under conditions where 
the double-sheath is distorted from the spherical 
shape and the simple model does not describe rhe 
measured behavior, 4) to argue, however, that the 
same physical phenomena are active when the double- 
sheath is distorted. and 5) to present preliminary 
data illustrating the basic physical phenomena 
associated with the electron emission process from 
a hollow cathode plasma contactor. 

It is argued that the 

Amaratus and Procedure 

In order to study the plasma contacting 
process experimentally, the apparatus st..cm 
schematically in Figs. 1 and 2 was constructed. 
The key elements of this apparatus are the two 
hollow cathode devices, one (shown at the right of 
each figure and labeled "simulator") used to 
generate a simulated ambient plasma and the other 
(shown at the left and labeled "contactor") used to 
generate a contactor plasma plume that is biased 
relative to the ambient plasma to induce current 
flow. Also shown in Figs. 1 and 2 are the p o w r  
supplies and instrumentation needed to sustain and 
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Fig. 1 Mechanical Schematic Diagram 
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Fig. 2 

measure the characteristics of the plasmas 
produced. 
cathodes are separated by 2.7 m and are located 
within a 1.2 m diameter by 5.3 m long vacuum 
chamber. 
diameter orifice plates and inserts that were 
fabricated by rolling 0.013 mm thick tantalum foils 
into the shape of a hollow cylinder and treating 
them with a low work function barium/strontium 
oxide material. 

Electrical System Schematic Diagram 

The simulator and contactor hollow 

They both utilize cathodes with 6 . 4  mm 

The orifice in the simulator cathode is 0.38 
mm in diameter and its anode is a solid 3.0 cm 
diameter, 0.25 mm thick tantalum plate oriented 
parallel to the orifice plate and separated from it 
by a distance that could be varied from 1 to 10 me. 
The orifice in the contactor cathode is, on the 
other hand, 0.76 mm in diameter. Its anode was 
either a 12 cm diameter, stainless steel plate with 
a 1 cm diameter tantalum insert having a 5 mm 
diameter orifice in it or a 3 cm diameter stainless 
steel plate with the same insert in it. In either 
case the anode plate, insert and orifice are all 
located concentric with the cathode centerline at a 
plane -2 mm downstream of and parallel to the 
cathode orifice plate. 

Typical tests were conducted by heating the 
contactor and simulator cathodes to temperatures 
where significant thermionic electron emission 
could occur (-1300 K), establishing high expellant 
(xenon) flowrates through them, and biasing their 
anodes positive using the discharge supplies to 
initiate cathode-to-anode discharges at each 
device. Nezt, the.desired contactor and simulator 
flowrates (m and tu ) and discharge current levels 
(JcD and J 
biased relg?ive to the simulator using the bias 
power supply: and voltage, current and probing 

7 were Zstablished; the contactor was 

instrument data were collected. The voltages and 
currents measured during typical tests are 
designated by the symbols shown within the circles 
in Fig. 2; they include the contactor and simulator 
discharge currents and voltages (JcD, JSD, VCD and 
V s D ) ,  the bias voltage between the contactor and 
simulator (V ) and the contactor and simulator 
electron emission currents (JcE and JsE). B 

The two switches shown at the contactor and 
simulator in Fig. 2 are positioned at either the 
"EE" or "EC" position depending on whether the 
contactor is biased negative of the simulator and 
therefore Emitting Electrons (EE) or biased 
positive and therefore Collecting Electrons (EC). 
It is necessary to position these switches 
differently for each operating mode to assure that 
intentional limitations imposed on the discharge 
current levels (J and J ) do not result in 
unintentional limf?ationsSgeing imposed on the 
electron emission or collection currents.s 

The tank bias switch shown in Fig. 2 was 
installed so the vacuum tank could be allowed to 
float relative to the contactor/simulator system Or 
be connected to the simulator or the contactor. 
Tests were conducted to investigate the effects of 
tank potential on contactor performance (contactor 
emission current vs. sheath voltage drop data) and 
on the plasmas produced around a contactor 
operating under various conditions. They showed a 
contactor collecting electrons exhibited 
essentially the same data suggestive of uniform 
current flow at the contactor whether the tank was 
floating or connected to the simulator cathode. 
Consequently, all electron collection data were 
acquired with the tank connected to the simulator 
cathode. 

Data obtained with the contactor operating at 
a high electron emission current, on the other 
hand, suggested the current flow was concentrated 
along the tank centerline at high emission current 
levels unless the tank was at simulator anode 
potential. 
representative of what would happen in space where 
the electrons would be free to go into an 
enveloping space environment rather than to a small 
simulator anode. Other data suggested that the 
most meaningful electron plasma property data 
associated with electron collection (i.e. those 
least perturbed by tank wall effects) were obtained 
with the tank either isolated or connected to the 
contactor cathode. 
obtaining data from a contactor emitting electrons. 
Contactor performance data which had to be gathered 
over a wide current range were obtained with the 
tank at simulator anode potential while plasma 
property data were obtained at a low emission 
current with the tank at contactor cathode 
potential. 

Such a condition was not considered 

Hence a compromise was made in 

The plasma environment produced between the 
contactor and the simulator was probed using the 
various instruments shown in Fig. 1. These 
instruments, the function they serve and the 
physical volume in which they can be used are: 

Emissive Probe- This sensor and the associated 
circuitry system, which are similar to those used 
by Aston,O yield plasma potential data directly. 
The sensor can be swept axially downstream from the 
contactor to the simulator and/or radially along an 
arc that extends from the tank/contactor centerline 
out to a radius of approximately 30 cm. 
output voltage (i.e. plasma potential) and position 
are recorded simultaneously on an X-Y plotter to 
assure well-correlated values of the data. 

Probe 
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Langmuir Probe- The sensor used on this probe 
is a 3.2 mm dia. stainless steel sphere that can be 
moved conveniently into any position occupied by 
the emissive probe. Probe current/voltage 
characteristic curves recorded at these positions 
are analyzed using a two electron-group numerical 
model' that is assumed to describe plasmas such as 
these. This analysis yields the density and 
temperature of a Maxwellian electron group and the 
density and energy of a primary (or mono-energetic) 
electron group. This analysis is aided by 
inputting plasma potential data determined using 
the emissive probe at each location where Langmuir 
probe data are collected. The circuitry together 
with additional detail about the numerical 
procedures used to obtain plasma information have 
been described previously.' 

commercially available pressure gaugee was modified 
by removing the glass enclosure around the sensor 
so its spatial resolution would be improved. This 
probe was used to measure the pressure 
distributions over the same region swept by the 
emissive and Langmuir probes. Because gauge 
readouts froa this device are inaccurate when a 
plasma is present, the measurements were made only 
when the plasma discharges were extinguished. 

Shultz-Phelps Ionization Gauge- This 

Retarding Potential Analyzer (RPA)- The sensor 
on this instrument was designed so it could be 
swept through an arc that passed through the tank 
centerline, was centered at the cathode orifice, 
and had a radius of abouc 18 cm. In the course of 
moving through this arc its aperture remained 
pointed at the cathode orifice as suggested in Fig. 
1. 
of high energy ions that approached it from the 
contactor plume. As shown in Fig. 3, it consists 
of a cylindrical stainless steel Faraday cage -13 
mm in diameter with a 4 mm diameter orifice in one 
end of it. Ions that pass through this orifice are 
collected on a 9 mm diameter Molybdenum surface 
positioned -3 mm downstream of the orifice plate. 
The data collected by the RPA was obtained when it 
was positioned in the ambient plasma region and 
oriented so that the orifice was facing the double- 
sheath. The Faraday cage surrounding the collector 
was biased 20 V below vacuum tank potential to 
prevent all electron (even high energy ones 
originating at the simulator cathode) from reaching 
the RPA collector. When the bias on the collector 
is varied relative to local plasma potential while 

Its purpose was to measure the current density 

COLLECTOR 

( FARADAY 
CAGE 

Fig. 3 Retarding Potential Analyzer 

the device is pointed at a contactor collecting 
electrons ion current density (collector ion 
current/RPA aperture area) data like those shown in 
Fig. 4 are obtained. 

Jco= 0 3 A Vco* 18 V 
mC= 4 I sccp ( x e )  
Po- 3.6r10- Ton 

JcE- -750 mA 

\ 

CONTACTOR ANODE 

I 
-30 -20 -10 0 10 20 30 40 50 

RPA COLLEClOR POTENTIAL (V) 

Fig. 4 Typical RPA Current Density/Potential Curve 

When the collector is biased negative 
(< -25 V) the data of Fig. 4 indicate the collected 
current saturates. 
is determined by the fact that both ambient plasma 
ions and energetic ions streaming from the 
contactor are being collecced. As the collector 
potential is increased above -25 V, the rate of ion 
collection from the ambient plasma ions drops off. 
As the potential is increased above 0 V ions 
accelerated from the contactor plume (plume ions) 
which have substantial energies but may not be 
reaching the collector surface with their full 
velocity normal to the surface begin to be 
repelled. Finally, the near-normal incidence plume 
ions are repelled from the collector as the current 
to it drops to zero at a potential near a value 
that corresponds to the maximum energy the ions 
should have (i.e. near contactor anode potential). 
There are several aspects of the probe design that 
cause it to behave in a non-ideal waylo, but it is 
believed that it yields reasonable plume ion 
current density data when the collector potential 
is greater than ambient plasma potential. In the 
present case the ion current density due to plume 
ions is defined somewhat arbitrarily as the value 
measured 2 V above plasma potential. As the data 
of Fig. 4 suggest, however, the value of plume 
current density is not particularly sensitive to 
the potential used as long as it lies within a few 
volts of this value. 

The magnitude of this current 

Results 

The overall performance of a hollow cathode 
plasma contactor tested under typical conditions in 
the experimental apparatus of Fig. 1 is shown in 
Fig. 5 .  This performance is presented as a plot of 
electron emission current versus contactor 
potential (i.e. the potential difference between 
the contactor and the ambient plasma with which it 
is exchanging current). The contactor was operated 
at the conditions listed in the legend and the tank 
bias switch was connected to the simulator. At 
potentials below -25 V the contactor is shown to 
emit electrons very easily (and most of this 
current is collected on the tank walls). On the 
other hand, at positive potentials, where the 
contactor is collecting electrons from the ambient 
plasma, the behavior is different. In fact, the 
contactor is shown to exhibit poor electron 
collection performance until a sufficiently high 
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Fig. 5 Typical Plasma Contactor Performance Curve 

potential is reached (-40 V in Fig. 5). At this 
potential the electron collection current increases 
quite suddenly. 
identified as a "transition to ignited mode" 
operation has been linked to enhanced ionization of 
neutrals in the contactor anode plasma by electrons 
streaming through the double-sheath from the 
ambient plasma.' 

Electron Collection Calibration Data 

This sudden increase in current, 

Extensive data have been collected using a 
contactor operating at one collection current, 
flowrate and discharge power condition so they can 
be used to calibrate numerical models of this 
process. 
describing the results obtained during such a test 
and indicating the extent to which these. results 
agree with a simple physical model of the electron 
collection process. 

This section will concentrate on 

The plasma potential structure that develops 
in the region surrounding a contactor collecting 
electrons is shown in Fig. 6. In this case the 
contactor is collecting 750 mA of electrons from 
the ambient plasma, and the sheath potential drop 
is about 32 V. 
discharge power of 5.4 W (the product of the 
discharge current (JcD- 0.3 A) and voltage (VcD- 
18 V)). 
the plasmas within and outside of the contactor 
hollow cathode and maintaining the temperature of 
its insert at the value needed to sustain the 
desired discharge current (about 1300 K). 
heater, shown in Fig. 2, is also used to sustain 
the insert temperature and was generally 
supplying 50 W of power. 
xenon atoms through the contactor hollow cathode 
was at a typical value of 4.1 standard cubic 
centimeters per minute (sccm (Xe)) while that 
through the simulator was 3 . 4  sccm (Xe). 
flowrates may also be expressed respectively as 280 

It is operating at a relatively low 

This power presumably goes into sustaining 

The 

The flowrate of neutral 

These 

and 230 milliamperes equivalent (mA eq)--flowrate 
expressed as the current of atoms that would flow 
if each carried the charge of 1.6~10 I Q  C. These 
flowrates induced a vacuum system background 
pressure of 3.6~10 6 Torr. 

The plasma potential variation measured along 
the centerline of the contactor/vacuum tank at this 
operating condition is shown in Fig. 7. Also 
listed on this figure are the Maxwellian electron 
temperatures,and plasma densities (densities due to 
both primary 
measured in the contactor plume and ambient plasma 
regions. 
collection current flowing from the ambient plasma 
to the downstream boundary of the double-sheath is 
determined by the ambient plasma random current 
density and the area of the downstream boundary 
(A ) ,  then this current can be expressed 
mathematically as 

and Maxwellian electron groups) 

If one assumes that the electron 

JW- 0.3 A Vcp- 18 V 

me- 4.1 rccm (Xs) 

Jw- -750 mA 
12 cm ANODE DIA 

F 
6 
2 
t- 

Q 
5 
Q 
v, 

J a 

I \ 
- I S . O I /  

0.0 5.0 10.0 15.0 20.0 25.0 

AXIAL POSITION [Z] (cm) 
b. Equipotential Contour Mop 

Fig. 6 Typical Plasma Potential Variation Near a 
Contactor Collecting Electrons 

*The mono-energetic or primary electron group- 
contributed densities of 1x108 and 2.7~10" cm s at 
energies of 45 eV and 52 eV in the contactor plume 
and ambient plasma regions, respectively. 

44 



Jm- 0.3 A Vm- 18 V 
m,- 4.1  KC^ (xe) 
P,- S.6alO-' Torr 

.I=- -750 m4 

10 - 
n-- 6 .8~10'  m-' 
T,- 6.5 *V 

I L I I 
5 10 15 20 

MI& WYnoN [Z] (ern) 

Fig. 7 Plasma Potential Variation Along the 

In Eq. 1, e is the electronic charge, m is the 
electronic mass, n 
electron density a88 temperature, and k is 
Boltzmann's constant. The parameter B in Eq. 1 is 
a presheath factor that accounts for enhanced 
electron collection from the ambient plasma. 
will be assumed to have a value of 1.49 in this 
study.lS 
boundary of the double-sheath (A ) determined from 
the data in Fig. 6 to be 810 cmzoand using the 
ambient plasma properties listed in Fig. 7, Eq. 1 
can be used to estimate the electron collection 
current at lJCEl - 581 mA. 
belov the measured current of 750 mA and is 
considered to be vithin the range of experimental 
error. 

Contactor/Vacuum Chamber Centerline 

and Teo are the amgient plasma 

It 

By measuring the area of the downstream 

This value is only 22% 

A similar technique can be used to calculate 
the ion current which is being emitted from the 
contactor plume plasma to the upstream boundary of 
the double-sheath if one assumes that the contactor 
plume ions approach this boundary at the B o b  
velocity.ll 
current mathematically is 

The equation which expresses this 

Ai 7 .  (2) J+ - e "+i 
+ m 

Using an upstream boundary area (Ai) of 360 cmz 
measured from the data presented in Fig. 6, the ion 
density (n+i- the sum of the Haxwellian and primary 
densities) and Maxwellian electron temperature T 
data presented in Fig. 7, the xenon ion mass (m 7 
and a value of y of 0 . 6 ; "  one can compute the ton 
emission current from Eq. 2 to be 1.3 mA. If one 
assumes that both the electron and ion currents are 
flowing through the double-sheath region at the 
space-charge-limited condition, then the ion 
emission current can also be written as J+-E CE. I J  a I (3) 

In Eq. 3, a is a non-dimensional parameter that 
depends on the geometry of the sheath, but which 
should be close to unity for the relatively thin 
sheath suggested by the data of Fig. 6. The ion 
emission current calculated using Eq. 3 is 1.5 mA, 
and this is close to the value found from Eq. 2 
(1.3 mA).  

In order to assure that sufficient excitation 
and ionization reactions are induced in the 
contactor plasma plume by electrons streaming into 
it from the ambient plasma, it is necessary to 
determine if the neutral atom density is sufficient 

to give a reasonable electron-atom inelastic 
collision frequency. 
density contour maps of Fig. 8 show the axial and 
radial variation in xenon atom density measured 
immediately.downstream of the contactor at the 
contactor ( m  ) and simulator ( m  ) flow conditions 
which induces the indicated ambfent pressure (Po). 
These data have been computed on the basis of 
pressure measurements by applying the perfect gas 
equation and assuming the background gas was in 
equilibrium with a 300 K vacuum chamber. Gas 
being ejected from the contactor was assumed to be 
at 1300 K (the estimated temperature of the hollow 
cathode). The data of Fig.  8 suggest the density 
drops from a high value at the contactor orifice to 
background levels at distances several centimeters 
from it. 

The raised density and equal 

t 
a :j z 

m,= 4.1 sccm IXe) 
m, - I .8 sccm (Xel 
Tc - I300 K 
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a. Roised Neutrol Density Map 
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b. Equi-density Contow Map 

Fig. 8 Variation in Neutral Atom Density near 
the Contactor 

Using data like those shown in Fig. 8, typical 
ion production rates due to electrons streaming 
toward the contactor cathode can be computed.' 
Results obtained from such calculations are shown 
in Fig. 9 in the form of a plot of integrated ion 
production rate by electrons that have streamed 
from the inner radius of the double-sheath to the 
radius values indicated on the horizontal axis. In 
order to make this calculation it has been assumed 
that the electrons are streaming uniformly on 
radial inward trajectories toward the contactor 
orifice and the neutral atoms supplied at the 
contactor orifice are streaming radially outward. 
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Fig. 9 Simple Spherical Model Prediction of Ion 
Production by Streaming Electrons 

The calculations have been made for the operating 
point associated with Figs. 6, 7, and 8. The c u m e  
indicates that the ion production rate increases 
dramatically as the streaming electrons approach 
the contactor orifice (r + 0) because the xenon 
density is highest there. 
arrow on the c u m e  (at 1.3 cm) indicates the radial 
position where the ion production due to streaging 
electrons alone would be sufficient to satisfy the 
space-charge-limited ion current required at the 
electron current being collected (JcE - -750 m A ) .  
Hence it is suggested that ion production induced 
by streaming electrons could be sufficient to 
assure low voltage operation of a contactor 
collecting electrons without including any ions 
produced in the hollow cathode-to-anode discharge. 
It is noted in this regard that discharge-produced 
ions are generated sufficiently close to the 
cathode so they can recombine on hollow cathode or 
anode surfaces more readily than ions produced by 
streaming electrons. It is considered likely that 
essentially all ions produced within a few Debye 
shielding lengths of the cathode (identified in 
Fig. 9) by either mechanism would be lost to the 
cathode. 
noteworthy that the discharge current (JcD) may be 
reduced to zero without inducing a change in the 
sheath voltage drop once the contactor is 
collecting electrons stably in the ignited mode. 
This observation also supports the hypothesis of 
substantial ion production by streaming electrons 
and is in agreement with observations made by 
Gilchrist et. al. in a tethered mother-daughter 
space experiment12. 

The location of the 

It is considered to be particularly 

The retarding potential analyzer (RPA) 
described previously was used to measure the 
azimuthal profile of the current density of ions 
expelled across the double-sheath under the 
conditions associated with Figs. 6 to 9. The 
resulting data are shown in Fig. 10. Note that the 
ion emission current densit). is a maximum on the 
centerline and that it drops to lower values on 
either side of the centerline. 
the ion emission current density data contained in 
Fig. 10 over a hemispherical surface with the 
radius of the RPA sweep arc (18 cm) to determine 
the overall ion emission current flowing from the 
contactor to the ambient plasma. 
doing is 4.2 mA in this case. Applying Eq. 3 to 
determine the space-charge-limited value of this 
current at the prevailing operating conditions one 
computes an ion emission current (1.5 mA) that is 
approximately one third of the measured value. 
Considering the uncertainties associated with these 

One can integrate 

The result of SO 
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Fig. 10 Azimuthal Variation of Current Density of 
Ions Emitted from the Contactor Plasma 

measurements and the space-charge limited model 
being applied, this is considered to be acceptable 
agreement. 

Examination of Eq. 3, which is based on the 
assumption of space-charge-limited current flow 
through a double-sheath, suggests that the ion 
emission current should vary linearly with electron 
collection current. In order to demonstrate the 
validity of this equation and therefore the fact 
that a space-charge-limited double-sheath develops, 
the ion emission current density was measured on 
the centerline (a readily measured quantity that is 
proportional to J ) as a function of the electron 
current being colfected by the contactor. The data 
that were collected in this test are shown in 
Fig. 11. This graph displays the expected linear 
variation of ion current density versus electron 
current and is in agreement with Eq. 3, except for 
the fact that the slope of the line (1/250) is 
about twice the square root of the electron-to- 
xenon ion mass ratio (1/490). This difference 
could be explained by the geometrical differences 
between the actual shape of the double-sheath and 
the simple model of the process reflected in Eq. 3. 

1 1 I I I I I 1 
c 3 0 1 3  4oa wo 700 mo 909 lodo 

D T m  CouEClIoN c u m  tIJall (4 

Fig. 11 Validation of Space-Charge-Limited Current 
Flow Assumption 

One can change the size and geometrical 
conditions of the double-sheath by changing the 
flowrate to the contactor. This can be done 
because large flowrates tend to expand the 
contactor plume thereby increasing the ratio of the 
inner-to-outer dimensions of the double-sheath and 

46 



causing the potential difference across the double- 
sheath to decrease. Equation 3 suggests, however, 
that the ion emission current of a contactor should 
depend to first order only on electron collection 
current (and not on flowrate or sheath voltage 
drop). In order to demonstrate the validity of Eq. 
3 more completely, a test was conducted in vhich 
the contactor flowrate was varied while the 
contactor electron collection current was held 
constant. The resulting data, showing ion emission 
current density on the centerline (which is 
proportional to the total ion emission current), 
are plotted against contactor flowrate in Fig. 12. 
This figure indicates that the ion emission current 
density remains relatively constant over the range 
of flowrates investigated. It is noted that the 
sheath potential drop for the data shown in Fig. 12 
ranged from 66 V at a flowrate of 2.9 sccm (Xe) to 
24 V at 6.3 sccm (Xe). This result is reasonable 
because the higher sheath potential drop is 
required at the lower flowrate to sustain the ion 
production rate by streaming electrons in an 
environment of lower neutral atom density within 
the contactor plume. 
Fig. 12 shov excellent agreement with Eq. 3 
suggests that the difference between the slope of 
the line in Fig. 11 and the value of this slope 
predicted by Eq. 3 cannot be completely explained 
on the basis of geometrical considerations. 

The fact that the data of 
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Fig. 12 Effects of Flowrate on Ion Emission 
Current Density at a given Electron 
Collection Current Condition 

Effects o f  Anode Area on Electron Collectioq 

Typical plasma property data measured 
downstream of a contactor operating with a 3 cm 
diameter anode (rather than the 12 cm diameter 

anode used in the tests that produced the data of 
Figs. 5 through 12) are shown in Figs. 13 and 14. 
Figure 13 contains potential maps in the region of 
the contactor measured at operating conditions that 
are similar to those obtained using the 12 cm 
diameter anode. The electron collection current is 
250 mA in this case whereas 750 mA was being 
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Fig. 13 Typical Plasma Potential Variation near a 
3 cm Anode Diameter Contactor Collecting 
Electrons 

collected with the 12 cm diameter anode. The most 
striking differences between the data of Figs. 13 
and 6 are the higher voltage levels, the spreading 
of the double-sheath and the reduction in the size 
of the contactor plume when the smaller anode is 
used. Although the relative position, magnitude 
and shape of the equipotential contours are 
different, it is argued that the voltage difference 
that exists is being sustained by acceleration of 
counterfloving ion and electron currents in both 
cases. 
with both anodes reflects the double-sheath 
phenomenon. 
because the inner boundary of this double-sheath 
must remain anchored to and therefore have a 
dimension that is about equal to the associated 
anode diameter. 
the electrons would generally be collected on the 
anode. 

Thus the potential structure associated 

The differences appear to develop 

This is a predictable result since 
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Fig. 14 Variation of Plasma Potential and Density 
along the Contactor/vacuum Chamber 
Centerline (3 cm Anode Diameter Contactor) 

The irregular shape of the double-sheath 
associated with the small anode (Fig. 13) makes it 
unsuitable for analysis using the simple, spherical 
model of Ref. 4. It is expected, however, that the 
smaller anode case can be modelled numerically. It 
is noted that the potential structure shown in 
Fig. 13 is similar to those reported by Patterson 
and Aadland13 for tests involving electron 
collection from what appears to have been a rather 
low ambient density plasma at current levels above 
1 A on a contactor that utilized a 24 cm diameter 
anode. A review of their data together with data 
obtained by the authors (including that of Fig. 13) 
suggests a double-sheath takes on an irregular 
(non-spherical) shape when the downstream boundary 
of the double-sheath becomes much larger than the 
anode diameter. 

The plasma properties, measured downstream of 
the contactor with the 3 cm diameter anode, along 
the centerline of the vacum tank, are shown in 
Fig. 14. The top plot in Fig. 14 displays the 
plasma potential variation and the bottom one shows 
the plasma density variation as functions of axial 
position. 
beyond 40 cm because the strong potential variation 
that exists upstream of that position generally 
makes the associated Langmuir probe trace 
aquisition and analysis unreliable. 
of the Langmuir probe traces obtained downstream of 
the 40*cm position indicate that the ambient 
plasma contained mostly Maxwellian electrons 
with a temperapare of 6 to 7 eV and a density of 
about 8x10' cm I. It was possible to obtain one 

The plasma density data are only shown 

The analysis 

* 
Although the Langmuir data did not fit the assumed 
distribution model perfectly, analysis indicated 
that the ambient plasma also consisted of -1xlO' 
cm 
40 eV 

of primary electrons with an energy of 30 to 

Langmuir probe trace close to the contactor (i.e. 
2 cm downstream of the anode) and it indicated that 
two electron groups were present, a Maxwellian 
group with a temperatyre of about 5 eV and a 
density of 2 . 4 ~ 1 0 ~  cm 
energy of -57 eV and a density of 3x10' cm 3. 
is suggested that this primary group consists of 
electrons that have been accelerated from the 
ambient plasma and have suffered no energy- 
degrading collisions. These data are not included 
in the bottom plot of Fig. 14 since data from only 
one position were collected and no trends could be 
inferred. Note, however, that the plasma density 
in the region close to the contactor is about 3 
times that in the ambient plasma. This result is 
also consistent with results obtained using 
contactors with larger anode diameters. 

Electron Emission 

and a primary group with an 
It 

The plasma potential variation downstream of a 
typical contactor which is emitting electrons is 
shown in Fig. 15. The contactor cathode (at the 
0,O location) is at the lowest potential (-17 V) of 
any point in the maps. Downstream of that point 
the potential rises to a ridge along which the 
potential peaks before it drops off and levels out. 
The peaked potential structure is noteworthy and 

Jco- 0.9 A b- 17 V 

0. Raised Potential Mop 

n 10.0 
E 
0 

W 

5.0 
U 

z 
0 0.0 
k 
v, 
0 a 
J 
9 
n a cx -10.0 

-5.0 

0.0 5.0 10.0 15.0 20.0 

AXIAL POSITION [Z] (cm) 

b. Equipotentiol Contour Map 

Fig. 15 Typical Plasma Potential Structure 
Occurring near a Contactor Emitting 
Electrons 



was initially unexpected. Figure 16 shows this 
structure in a series of plasma potential profiles 
measured along the centerline between the contactor 
(emitting electrons) and the simulator (collecting 
electrons) at different electron emission currents. 
These curves were measured using an emissive probe 
with the contactor operating at the conditions 
listed in the legend. They were obtained with the 
tank bias switch connected to the contactor (see 
Fig. 2) and the plasma potentials shown are 
measured with respect to contactor cathode 
potential. These profiles show a potential hump 
near (within 1 cm of) the contactor that becomes 
increasingly larger as the emission current is 
reduced. 

, I # , I I I 

25 - 

2 20-  

z 

Fig. 16 Effects of Electron hission Current on 
Plasma Potential Profiles 

The mechanism by which the potential 
stmctures shown in Figs. 15 and 16 are believed to 
be produced can be understood by considering the 
simplified schematic and corresponding potential 
profile shown in Fig. 17. In the potential 
environment shown, electrons emitted from the 
cathode would be accelerated through the potential 
gradient at the contactor to the point where they 
had sufficient 
excite and ionize neutral atoms that are present at 
a high density near the contactor. 
associated ion production that would be expected to 
produce the overabundance of ions that causes the 
potential humps shown in Figs. 15 and 16 to 
develop. 
because electron kinetic energy which would 
typically exceed the energy needed for ionization 
would tend to cause the less massive electrons to 
leave the region of ionization more rapidly than 
the ions.l6 Immediately downstream of the peak 
potential the potential drops and forces develop 
that decelerate the electrons and accelerate the 
ions. 
is one in which the measurements show ion and 
electron densities are relatively low, the 
electrons are mono-energetic and the required net 
electron current is being conducted via a plasma 
expansion process to the surrounding ambient 
plasma. 
by the model of Davis et. al.la except for the fact 
that this model is based on the assumption of 
Maxwellian electrons expanding in accordance with 
the barometric equation rather than mono-energetic 
electrons. 

kinetic energy to enable them to 

It is the 

This ion overabundance is expected 

The region downstream of the potential hump 

This result is similar to that predicted 

Langmuir probe data collected throughout the 
regions identified in Fig. 17 suggest that the 
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Fig. 17 Simple Physical Model of Electron Emission 
Process which Occurs within the Vacuum 
Chamber 

electron current being emitted from the contactor 
hump expands in a spherically symmetric manner up 
to the point where the plasma potential begins to 
rise again. The sheath structure associated with 
this rise is typically located 40 to 100 cm 
downstream of the contactor and exhibits a 
potential rise of -10 V. 
between the spherically expanding plasma coming 
from the contactor and the ambient plasma which 
fills the majority of the vacuum chamber. The 
location of this boundary could very well be 
determined by the interaction of the intermediate 
double-sheath and the vacuum tank wall. Whether or 
not this is the case has not been verified, but it 
is noted that the existence of the sheath is not 
influenced by switching the tank between contactor 
cathode and floating potentials. 
hand, connecting the tank to the simulator anode 
causes the potential structure shown in Figs. 15 
through 17 to disappear. 

It serves as a boundary 

On the other 

The ambient plasma downstream of the 
intermediate double-sheath shown in Fig. 17 has a 
higher plasma density than the region of spherical 
expansion plasma nearest it. 
contains mostly Haxwellian electrons with a 
temperature of 5 to 7 eV. Obviously, the electrons 
drawn from the contactor sustain the ambient plasma 
by producing ions, but the reason why a distinct 
boundary develops between the expansion and ambient 
plasma regions is not understood. The work 
conducted to date has not focused on the structure 
of the second sheath, the processes associated with 
sustaining it, or parameters which might influence 
its characteristics. It has instead addressed the 
plasma expansion processes occurring between the 
contactor and a position approximately 40 cm 
downstream of it. 

The ambient plasma 
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Fig. 18 Plasma Potential Profile Measured in the 
Plasma Expansion Region 

The typical plasma potential profile shown in 
Fig. 18 was measured at slightly different 
operating conditions than the ones listed in Fig. 
16. The dotted section of the curve was drawn 
after the data were taken and is meant to suggest 
that the plasma from which the 250 mA of electron 
current is being extracted is at a potential of -6 
V. This value of potential was found by measuring 
the energy of the electron population in the region 
downstream of the contactor and by assuming that 
many of the mono-energetic electrons found in the 
plasma expansion region have not suffered energy- 
degrading collisions as they have expanded away 
from the contactor. 

Spherical expansion of a plasma containing 
electrons of kinetic energy E and velocities 
directed radially outward from their source point 
can be described in terms of the current flowing by 
the equation 

In Eq. 4, ne is the density of emitted electrons at 
a radius r measured from the source point and 3 is 
the solid angle through which the electrons are 
expanding. A t  the fixed emission current, this 
equation shows the associated electron density 
should vary inversely with the square of the radius 
r and the square-root of the energy E. 

Langmuir probe electron current at plasma potential 
(which is proportional to the electron density- 
velocity product) have been made as a function of 
distance from the contactor cathode at the 
operating conditions associated with the data of 
Fig. 18. 
plot of probe current versus position on a log-log 
scale in Fig. 19. The fact that this plot is 
linear and has a slope of -2 indicates that the 
expected l/r2 variation of electron density is 
observed and that the spherical expansion model of 
the process is appropriate. In addition, the 
intercept shown on the figure can be used to 
estimate the solid angle $ through which the 
electrons are expanding. For the data of Fig. 19. 
calculations Indicate this angle should be slightly 
greater than 3.5 steradians (-one-forth of a full 
sphere). 

Experimental measurements of the variation in 

These data are shown in the form of a 

Conclusions 

A detailed study of a contactor collecting 
electrons conducted with an anode that produced a 
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Fig. 19 Probe Current Versus Position Data 

nearly hemispherical double-sheath shows good 
agreement and is self-consistent with a simple one- 
dimensional spherical model. 
a contactor with a smaller anode show substantial 
distortion from the spherically shaped double- 
sheath and consequently the elementary spherical 
model cannot be applied to it. 
data reported by other investigators" it is 
suggested that the elementary model begins to break 
down when the diameter of the downstream boundary 
of the double-sheath exceeds (by a factor of 3 to 
4) the diameter of the planar contactor anode on 
which electrons are collected. In all cases, 
results suggest the same physical phenomena related 
to the development of a double-sheath and 
ionization by electrons streaming across this 
sheath toward the contactor appear to be active. 
The detailed data obtained using both the large and 
small anode contactors should prove to be useful in 
developing and calibrating more elaborate models 
suitable for use in predicting contactor 
performance over wide ranges of operating 
conditions. 

Measured in the Plasma Expansion Region 

Data collected using 

Based on these and 

In the electron emission mode development of a 
region of high ion production close to the cathode 
orifice followed by a region of rapid potential 
dropoff is observed. 
turn by a region of constant potential in which 
mono-energetic electrons stream toward a simulated 
ambient plasma in a spherically symmetric manner. 
Present instrumentation is not adequate to verify 
this physical model of the region under all 
operating conditions and more experimental work is 
necessary to identify other important phenomena. 

This region is followed in 
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